Abstract

BackgroundOil in the form of triacylglycerols (TAGs) is quantitatively the most important storage form of energy for eukaryotic cells. Diacylglycerol acyltransferase (DGAT) is considered the rate-limiting enzyme for TAG accumulation. Chlorella, a unicellular eukaryotic green alga, has attracted much attention as a potential feedstock for renewable energy production. However, the function of DGAT1 in Chlorella has not been reported.ResultsA full-length cDNA encoding a putative diacylglycerol acyltransferase 1 (DGAT1, EC 2.3.1.20) was obtained from Chlorella ellipsoidea. The 2,142 bp open reading frame of this cDNA, designated CeDGAT1, encodes a protein of 713 amino acids showing no more than 40% identity with DGAT1s of higher plants. Transcript analysis showed that the expression level of CeDGAT1 markedly increased under nitrogen starvation, which led to significant triacylglycerol (TAG) accumulation. CeDGAT1 activity was confirmed in the yeast quadruple mutant strain H1246 by restoring its ability to produce TAG. Upon expression of CeDGAT1, the total fatty acid content in wild-type yeast (INVSc1) increased by 142%, significantly higher than that transformed with DGAT1s from higher plants, including even the oil crop soybean. The over-expression of CeDGAT1 under the NOS promoter in wild-type Arabidopsis thaliana and Brassica napus var. Westar significantly increased the oil content by 8–37% and 12–18% and the average 1,000-seed weight by 9–15% and 6–29%, respectively, but did not alter the fatty acid composition of the seed oil. The net increase in the 1,000-seed total lipid content was up to 25–50% in both transgenic Arabidopsis and B. napus.ConclusionsWe identified a gene encoding DGAT1 in C. ellipsoidea and confirmed that it plays an important role in TAG accumulation. This is the first functional analysis of DGAT1 in Chlorella. This information is important for understanding lipid synthesis and accumulation in Chlorella and for genetic engineering to enhance oil production in microalgae and oil plants.

Highlights

  • Oil in the form of triacylglycerols (TAGs) is quantitatively the most important storage form of energy for eukaryotic cells

  • Identification, sequence and phylogenetic analysis of characterized a novel DGAT1 gene (CeDGAT1) in C. ellipsoidea Based on the expressed sequence tag (EST) data of C. ellipsoidea, a full-length cDNA fragment of C. ellipsoidea DGAT1, designated as CeDGAT1, was cloned and identified

  • CeDGAT1 shared no more than 40% identity with DGAT1s of higher plants, such as G. max (40%), Z. mays (39%), R. communis (38%), Arabidopsis (38%), B. napus (36%), V. fordii (35%) and J. curcas (34%)

Read more

Summary

Introduction

Oil in the form of triacylglycerols (TAGs) is quantitatively the most important storage form of energy for eukaryotic cells. Diacylglycerol acyltransferase (DGAT) is considered the rate-limiting enzyme for TAG accumulation. Triacylglycerols (TAGs) are the main storage lipids in various organisms, such as oilseed plants, oleaginous fungi, yeasts, and microalgae. They are a major source of highly reduced carbon molecules for food and fuel [1, 2]. TAGs are synthesized in endoplasmic reticulum (ER) and accumulate as oil droplets in lipid bodies, which are generated by budding off from the outer ER membrane [3, 4]. DGAT has been proposed to be the rate-limiting enzyme for TAG accumulation [7, 8]. The role of the cytosolic DGAT3 has not yet been determined

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.