Abstract

Ascorbic acid serves a vital role as a pre-eminent antioxidant. In animals, it has been shown to be concentrated in granulosa and theca cells of the follicle, in luteal cells of the corpus luteum, and in the peripheral cytoplasm of the oocyte. We have previously identified hormonally-regulated ascorbic acid transporters in rat granulosa and luteal cells, and herein present preliminary evidence for the presence of a transporter for ascorbic acid in human granulosa-lutein cells. Granulosa-lutein cells were obtained from the follicular fluid of patients undergoing in-vitro fertilization. Following an overnight incubation, the cells were incubated with [14C]-ascorbic acid (0.15 microCi; 150 microM) and ascorbic acid uptake was determined. The uptake of ascorbic acid was saturable with a Michaeli's constant (Km) and maximum velocity (Vmax) of 21 microM and 3 pmol/10(6) cells/min respectively. Ouabain, low Na+ medium, and dinitrophenol significantly inhibited ascorbic acid uptake (P<0.05). Neither the presence of insulin, human chorionic gonadotrophin (HCG), insulin-like growth factor (IGF)-I, nor IGF-II affected the uptake of ascorbic acid in a statistically significant fashion. Following saturation of cellular uptake, the ascorbic acid level was estimated to be 1.04 pmoles/10(6) cells or approximately 1 mM, a high concentration similar to that seen in rat luteal cells. Active ascorbic acid transport in human granulosa-lutein cells appears to occur via a Na+ - and energy-dependent transporter, with high levels of ascorbic acid being accumulated in these cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.