Abstract

The enzymes essential for bacterial peptidoglycan biosynthesis are attractive targets for antimicrobial drug development. One of these is MurB, which contains FAD as a cofactor and catalyzes the NADPH-dependent reduction of UDP-N-acetylenolpyruvylglucosamine (UDP-GlcNAcEP) to UDP-N-acetylmuramic acid. This study examined the roles of the conserved amino acid residues of Staphylococcus aureus MurB, which are located near the active site in X-ray crystal structures. Seven out of 11 site-directed mutated murB genes lost the ability to complement a temperature-sensitive S. aureus murB mutant. Biochemical characterization of the seven mutated MurB proteins revealed that they cannot carry out the reduction of UDP-GlcNAcEP, though they can all catalyze the intramolecular reduction of FAD via NADPH. Spectrometric analyses of the oxidized form of the mutated proteins in the presence and absence of NADP+ or UDP-GlcNAcEP revealed that these essential amino acid residues play four distinct roles in substrate interactions. An essential residue of MurC, which catalyzes a ligation of L-Ala to UDP-N-acetylmuramic acid was also revealed by a chemical mutagenesis approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call