Abstract

Paraburkholderia terrae strain KU-15 grows on 2- and 4-nitrobenzoate and 2- and 4-aminobenzoate (ABA) as the sole nitrogen and carbon sources. The genes responsible for the potential degradation of 2- and 4-nitrobenzoate and 2-ABA have been predicted from its genome sequence. In this study, we identified the pab operon in P.terrae strain KU-15. This operon is responsible for the 4-ABA degradation pathway, which involves the formation of a γ-glutamylated intermediate. Reverse transcription-polymerase chain reaction revealed that the pab operon was induced by 4-ABA. Herein, studying the deletion of pabA and pabB1 in strain KU-15 and the examining of Escherichia coli expressing the pab operon revealed the involvement of the operon in 4-ABA degradation. The first step of the degradation pathway is the formation of a γ-glutamylated intermediate, whereby 4-ABA is converted to γ-glutamyl-4-carboxyanilide (γ-GCA). Subsequently, γ-GCA is oxidized to protocatechuate. Overexpression of various genes in E.coli and purification of recombinant proteins permitted the functional characterization of relevant pathway proteins: PabA is a γ-GCA synthetase, PabB1-B3 functions in a multicomponent dioxygenase system responsible for γ-GCA dioxygenation, and PabC is a γ-GCA hydrolase that reverses the formation of γ-GCA by PabA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call