Abstract

The primary objective of this study was to characterize Fusarium spp. associated with the economically devastating mango malformation disease (MMD) in Mexico. In all, 142 Fusarium strains were isolated from symptomatic mango inflorescences and vegetative tissues in eight geographically diverse Mexican states from 2002 through 2007. Initially, all the Mexican isolates were screened for genetic diversity using appolymerase chain reaction and random amplified polymorphic DNA markers and were grouped into seven distinct genotypes. Based on results of these analyses, evolutionary relationships and species limits of the genetically diverse MMD-associated Fusarium spp. were investigated using multilocus DNA sequence data and phylogenetic species recognition. Maximum parsimony analyses of a five-locus data set comprising 5.8 kb of aligned DNA sequence data indicated that at least nine phylogenetically distinct Fusarium spp. within the Gibberella fujikuroi species complex are associated with MMD, including one species within the African clade (Fusarium pseudocircinatum), two species within the Asian clade (F. mangiferae and F. proliferatum), and at least six species within the American clade (F. sterilihyphosum and five undescribed Fusarium spp.). Molecular phylogenetic analyses indicate that a novel genealogically exclusive lineage within the American clade was the predominant MMD associate in Mexico. This new Fusarium sp. caused MMD and could be distinguished from all other known species morphologically by the production of mostly sterile, coiled hyphae which are typically associated with sporodochial conidiophores together with unbranched or sparsely branched aerial conidiophores. Koch's postulates were completed for isolates of the new species on nucellar seedlings of mango cv. Ataulfo. This pathogen is formally described herein as F. mexicanum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.