Abstract

Chitinases or chitinolytic enzymes have different applications in the field of medicine, agriculture, and industry. The present study is aimed at developing an effective hyperchitinase-producing mutant strain of novel Bacillus licheniformis. A simple and rapid methodology was used for screening potential chitinolytic microbiota by chemical mutagenesis with ethylmethane sulfonate and irradiation with UV. There were 16 mutant strains exhibiting chitinase activity. Out of the chitinase-producing strains, the strain with maximum chitinase activity was selected, the protein was partially purified by SDS-PAGE, and the strain was identified as Bacillus licheniformis (SSCL-10) with the highest specific activity of 3.4 U/mL. The induced mutation model has been successfully implemented in the mutant EMS-13 (20.2 U/mL) that produces 5-6-fold higher yield of chitinase, whereas the mutant UV-11 (13.3 U/mL) has 3-4-fold greater chitinase activity compared to the wild strain. The partially purified chitinase has a molecular weight of 66 kDa. The wild strain (SSCL-10) was identified as Bacillus licheniformis using 16S rRNA sequence analysis. This study explores the potential applications of hyperchitinase-producing bacteria in recycling and processing chitin wastes from crustaceans and shrimp, thereby adding value to the crustacean industry.

Highlights

  • Shrimp production in India was estimated to be 700,000 tons in 2019, with the state of Tamil Nadu being one of the main producers

  • Our earlier study reported that the 16 bacterial strains isolated from shrimp residues expressed different hydrolysis halo sizes [8]

  • Our results revealed that Bacillus licheniformis (SSCL-10) is a potential organism to be used as a biocontrol agent and improve ecofriendly environment

Read more

Summary

Introduction

Shrimp production in India was estimated to be 700,000 tons in 2019, with the state of Tamil Nadu being one of the main producers. The seafood industry makes a significant contribution to the global food supply providing an essential source of protein. The commercialization of this aquaculture has generated economic profits while the wastes produced by these industries have had an adverse effect on the ecosystem [1, 2]. The global fish production is estimated to rise from 154 million tons in 2011 to 186 million tons in 2030 [3]. 5% of shrimp wastes are processed into flours and extracts which form a base for animal feed [4]. Shrimp wastes consist of 40% chitin, a polysaccharide made up of N-acetylglucosamine units [5] and a significant primary resource for the source of bioactive molecules [6]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call