Abstract

A relatively small number of well-characterized inhibitors of kidney stone formation have been identified from the previous research involved in its formation. In this study conventional biochemical methods have been combined with recent advances in mass spectrometry (MS) to identify a novel calcium oxalate (CaOx) crystal growth inhibitor in human renal stone matrix. Proteins were isolated from the matrix of human CaOx containing kidney stones. Proteins having MW>10 kDa were subjected to anion exchange and molecular-sieve chromatography. Protein fractions were tested for their effects on CaOx crystal growth. Most potent fraction was excised, ingel tryptic digested and identified by matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) MS. An anionic protein (MW~42 kDa) with potent inhibitory activity against CaOx crystal growth was purified. Its homogeneity was confirmed by RP-HPLC. It was identified by MALDI-TOF-MS followed by database search on MASCOT server as human phosphate cytidylyltransferase 1, beta. Molecular weight of this novel CaOx crystal growth inhibitor from human renal stone matrix is also the same as that of human phosphate cytidylyltransferase 1, choline, beta.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.