Abstract
The mechanisms and driving forces for the uptake of the unconjugated bile acid cholate were investigated both in cultured rat hepatocytes and in rat liver basolateral (sinusoidal) plasma membrane (BLPM) vesicles. Determination of initial uptake rates of [3H]cholate (0.1 microM) into cultured hepatocytes confirmed that the majority (75%) of the transmembrane transport was mediated by Na(+)-independent mechanisms. This portion of cholate uptake consisted of a pH-sensitive moiety representing nonionic diffusion, which may become quantitatively important at low pH and high cholate concentrations, as well as of a saturable (Michaelis constant 7.4 microM), 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)-sensitive transport moiety, suggesting the involvement of a carrier. This latter transport system was functionally characterized by 1) inhibition of cellular cholate uptake in the absence of extracellular sodium by the dicarboxylic acid alpha-ketoglutarate (alpha-KG; 1 mM) and by the organic anion p-aminohippurate (PAH; 1 mM); 2) stimulation of cellular cholate uptake by alpha-KG (10 microM) or PAH (1 mM) in the presence of an inwardly directed sodium gradient; 3) lack of sensitivity toward lithium in BLPM vesicles; 4) trans-stimulation of vesicular cholate uptake by alpha-KG or PAH, but not by benzoate; and 5) cis-inhibition of alpha-KG/alpha-KG self-exchange by extravesicular cholate (400 microM), PAH (5 mM), probenecid, or DIDS. Collectively, these data indicate the presence of a Na(+)-dicarboxylate cotransport-coupled organic anion exchanger in the hepatocyte basolateral plasma membrane that may be involved in cholate uptake in the liver.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Gastrointestinal and Liver Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.