Abstract

Oysters, which are flavourful edible marine products, have been utilised to produce Maillard reaction products (MRPs), which contribute to saltiness enhancement. Here, the molecular weight distribution, free amino acids, and taste characteristics of MRPs were analysed, while ultraviolet light was used to observe the Maillard reaction. Both thermal degradation and cross-linking reactions occur during the Maillard reaction. When the Maillard reaction time was 90min, the saltiness, umami, and richness of the MRPs peaked, however bitterness reached its lowest value. Moreover, at an MRP concentration of 1.5mg/mL, salts were reduced by 35.71% in a 3mg/mL sodium chloride solution without reducing saltiness, based on sensory evaluation. Glycation sites of the MRPs, which are crucial for saltiness enhancement and derived from a variety of protein sources, were determined using nano-HPLC-MS/MS analysis. Our study establishes the foundation for preparing salt-enhancing peptides, accelerating the popularisation of oyster-derived flavouring agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.