Abstract

DNA-binding Proteins from Starved cells (Dps) are anti-stress iron proteins preserving bacteria from oxidative damage. Based on sequence alignment, a 564-bp open reading frame (all1173) encoding product in Anabaena sp. PCC 7120 shared high similarity with Dps family proteins. RT-PCR showed all1173 is active at transcriptional level in Anabaena sp. PCC 7120 cells. We accordingly cloned the all1173 into prokaryotic expression system, purified the corresponding recombinant protein (Dps1173) and characterized its properties in vitro. According to CD spectrum and non-denaturing electrophoresis assays, recombinant Dps1173 was alpha helix riched, and was likely to form dodecametric oligomer under native conditions. Fluorescence titration experiment revealed two major iron binding sites within Dps1173 monomer, indicating its potential ferroxidase activity. Although phenomena of direct DNA binding was not observed in Electrophoretic mobility shift assay, Dps1173 could also protect DNA from H2O2 stress for its iron scavenging capacity. This is the first description of Dps from heterocystous cyanobacterium Anabaena sp. PCC 7120.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.