Abstract
This study proposes a new class of heterogeneous causal quantities, referred to as outcome-conditioned average structural derivatives (OASDs), in a general nonseparable model. An OASD is the average partial effect of a marginal change in a continuous treatment on individuals located on different parts of an outcome distribution, irrespective of individuals’ characteristics. We show that OASDs extend the unconditional quantile partial effects (UQPE) proposed by Firpo, Fortin, and Lemieux to that conditional on a set of outcome values by effectively integrating the UQPE. Exploiting such relationship brings about two merits. First, unlike UQPE that is generally not n -estimable, OASD is shown to be n -estimable. Second, our estimator achieves semiparametric efficiency bound which is a new result in the literature. We propose a novel, automatic, debiased machine-learning estimator for an OASD, and present asymptotic statistical guarantees for it. The estimator is proven to be n -consistent, asymptotically normal, and semi-parametrically efficient. We also prove the validity of the bootstrap procedure for uniform inference for the OASD process. We apply the method to Imbens, Rubin, and Sacerdote’s lottery data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.