Abstract

Sequences of human endogenous retroviruses (HERVs) are members of the long terminal repeat (LTR) retrotransposon family. Although the expression of HERV has long been a topic of investigation, HERV-insertion polymorphisms are not well known, and a genetic association between HERV-insertion polymorphisms and cancer has never been reported. To identify novel HERV loci in the genome from cancer tissues, we carried out the inverse PCR method targeting a conserved LTR region of HML-2, which is the most recently acquired HERV group. Novel two insertions, HML-2_sLTR(1p13.2) and HML-2_sLTR(19q12), were identified as insertionally polymorphic solo LTRs. Furthermore, a significant prevalence of HML-2_sLTR(1p13.2) homozygosity was detected in female never-smoking patients aged 60 years and over who had lung adenocarcinoma [versus the other genotyping; odds ratio (OR): 1.97; 95% confidence interval (CI): 1.01-3.81]. In another cohort consisting of female never-smoking patients with lung adenocarcinoma, a prevalence of HML-2_sLTR(1p13.2) homozygosity tended to be high in patients aged 60 years and over (versus the other genotyping; OR: 2.03; 95% CI: 0.96-4.29), whereas a low prevalence of HML-2_sLTR(1p13.2) homozygosity was detected in patients <60 years old (versus the other genotyping; OR: 0.31; 95% CI: 0.11-0.94). Our results suggest that HML-2_sLTR(1p13.2) is involved with the susceptibility to lung adenocarcinoma in female never-smokers in an age-dependent manner and that other HERV polymorphisms related to human diseases might remain to be identified in the human genome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call