Abstract

BackgroundN-ras protein is encoded by the NRAS gene and operates as GDP-GTP-controlled on/off switching. N-ras interacts with cellular signaling networks that regulate various cellular activities including cell proliferation and survival. The nonsynonymous single nucleotide polymorphism (nsSNPs)-mediated alteration can substantially disrupt the structure and activity of the corresponding protein. N-ras has been reported to be associated with numerous diseases including cancers due to the nsSNPs. A comprehensive study on the NRAS gene to unveil the potentially damaging and oncogenic nsSNPs is yet to be accomplished. Hence, this extensive in silico study is intended to identify the disease-associated, specifically oncogenic nsSNPs of the NRAS gene. ResultsOut of 140 missense variants, 7 nsSNPs (I55R, G60E, G60R, Y64D, L79F, D119G, and V152F) were identified to be damaging utilizing 10 computational tools that works based on different algorithms with high accuracy. Among those, G60E, G60R, and D119G variants were further filtered considering their location in the highly conserved region and later identified as oncogenic variants. Interestingly, G60E and G60R variants were revealed to be particularly associated with lung adenocarcinoma, rhabdomyosarcoma, and prostate adenocarcinoma. Therefore, D119G could be subjected to detailed investigation for identifying its association with specific cancer. ConclusionThis in silico study identified the deleterious and oncogenic missense variants of the human NRAS gene that could be utilized for designing further experimental investigation. The outcomes of this study would be worthwhile in future research for developing personalized medicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call