Abstract

BackgroundMajority of the Asian people depend on rice for nutritional energy. Rice cultivation and yield are severely affected by soil salinity stress worldwide. Marker assisted breeding is a rapid and efficient way to develop improved variety for salinity stress tolerance. Genomic microsatellite markers are an elite group of markers, but there is possible uncertainty of linkage with the important genes. In contrast, there are better possibilities of linkage detection with important genes if SSRs are developed from candidate genes. To the best of our knowledge, there is no such report on SSR markers development from candidate gene sequences in rice. So the present study was aimed to identify and analyse SSRs from salt responsive candidate genes of rice.ResultsIn the present study, based on the comprehensive literature survey, we selected 220 different salt responsive genes of rice. Out of them, 106 genes were found to contain 180 microsatellite loci with, tri-nucleotide motifs (56%) being most abundant, followed by di-(41%) and tetra nucleotide (2.8%) motifs. Maximum loci were found in the coding sequences (37.2%), followed by in 5′UTR (26%), intron (21.6%) and 3′UTR (15%). For validation, 19 primer sets were evaluated to detect polymorphism in diversity analysis among the two panels consisting of 17 salt tolerant and 17 susceptible rice genotypes. Except one, all primer sets exhibited polymorphic nature with an average of 21.8 alleles/primer and with a mean PIC value of 0.28. Calculated genetic similarity among genotypes was ranged from 19%-89%. The generated dendrogram showed 3 clusters of which one contained entire 17 susceptible genotypes and another two clusters contained all tolerant genotypes.ConclusionThe present study represents the potential of salt responsive candidate gene based SSR (cgSSR) markers to be utilized as novel and remarkable candidate for diversity analysis among rice genotypes differing in salinity response.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0498-1) contains supplementary material, which is available to authorized users.

Highlights

  • Majority of the Asian people depend on rice for nutritional energy

  • We report an exclusive identification of novel salt responsive candidate gene based simple sequence repeats (SSR) markers from rice

  • In order to enrich the genomic resource for developing salinity tolerance in rice, here we report the development of salt responsive candidate gene based SSR markers in rice for the first time

Read more

Summary

Introduction

Majority of the Asian people depend on rice for nutritional energy. Rice cultivation and yield are severely affected by soil salinity stress worldwide. Marker assisted breeding is a rapid and efficient way to develop improved variety for salinity stress tolerance. Genomic microsatellite markers are an elite group of markers, but there is possible uncertainty of linkage with the important genes. To the best of our knowledge, there is no such report on SSR markers development from candidate gene sequences in rice. Availability of high quality genome sequence [5] further eases up the mining of DNA markers to facilitate marker assisted breeding programme in rice. With the advancement of molecular techniques, a diverse group of molecular markers like restriction fragment length polymorphism (RFLP), random amplification of polymorphic DNA (RAPD), variable number tandem repeat (VNTR), amplified fragment length polymorphisms (AFLP), microsatellites polymorphism or simple sequence repeats (SSR) and single nucleotide polymorphism (SNP) have been developed. SSR markers have been extensively used in phylogenetic relationship cum diversity analysis among rice genotypes [7,8,9], association mapping [10,11] and identification and characterization of important trait related QTL [12,13,14]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.