Abstract
BackgroundThe key to interpreting the contribution of a disease-associated mutation in the development and progression of cancer is an understanding of the consequences of that mutation both on the function of the affected protein and on the pathways in which that protein is involved. Protein domains encapsulate function and position-specific domain based analysis of mutations have been shown to help elucidate their phenotypes.ResultsIn this paper we examine the domain biases in oncogenes and tumour suppressors, and find that their domain compositions substantially differ. Using data from over 30 different cancers from whole-exome sequencing cancer genomic projects we mapped over one million mutations to their respective Pfam domains to identify which domains are enriched in any of three different classes of mutation; missense, indels or truncations. Next, we identified the mutational hotspots within domain families by mapping small mutations to equivalent positions in multiple sequence alignments of protein domains We find that gain of function mutations from oncogenes and loss of function mutations from tumour suppressors are normally found in different domain families and when observed in the same domain families, hotspot mutations are located at different positions within the multiple sequence alignment of the domain.ConclusionsBy considering hotspots in tumour suppressors and oncogenes independently, we find that there are different specific positions within domain families that are particularly suited to accommodate either a loss or a gain of function mutation. The position is also dependent on the class of mutation. We find rare mutations co-located with well-known functional mutation hotspots, in members of homologous domain superfamilies, and we detect novel mutation hotspots in domain families previously unconnected with cancer. The results of this analysis can be accessed through the MOKCa database (http://strubiol.icr.ac.uk/extra/MOKCa).
Highlights
All cancers depend on mutations in critical genes that confer a selective advantage to the tumour cell
We identified the mutational hotspots within domain families by mapping small mutations to equivalent positions in multiple sequence alignments of protein domains
We find that gain of function mutations from oncogenes and loss of function mutations from tumour suppressors are normally found in different domain families and when observed in the same domain families, hotspot mutations are located at different positions within the multiple sequence alignment of the domain
Summary
All cancers depend on mutations in critical genes that confer a selective advantage to the tumour cell. Knowledge of these mutations is fundamental to understanding the biology of cancer initiation and progression, and to the development of targeted therapeutic strategies. When mutations (or epigenetic silencing) of the protein products of tumour suppressors result in their loss of function (LOF), cancer progression occurs. Driver alterations in these genes are typically molecularly recessive in nature, with both copies of the gene requiring www.impactjournals.com/oncotarget a LOF defect. Protein domains encapsulate function and position-specific domain based analysis of mutations have been shown to help elucidate their phenotypes
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.