Abstract
The groundbreaking advancement of micro unmanned aerial vehicles (micro-UAVs) has been staggering. The diversity of micro-UAV operations is demanding in most sectors. However, the current regulatory framework for the civilian use of these devices is still insufficient. The operation of micro-UAVs may pose risks, including privacy violations and collision hazards. To address these concerns, a radar with advanced processing is needed. This study presents a preliminary design of an S-band continuous wave (CW) radar, which was simulated using MATLAB. The size of the rotating propeller blades of the micro-UAV ranges from 20 to 40 cm in length, while the size of a bird’s flapping wing measures 35 cm in length, comprising 22 cm for the upper arm and 13 cm for the lower arm. The analysis was conducted under hovering conditions, where the target's main body is stationary while its micro-parts move continuously. The Short-Time Fourier Transform (STFT) analysis successfully identified the unique signature of both targets. The results showed that the S-band CW radar design at 5 GHz is effective in extracting the micro-Doppler signature of a bird versus a micro-UAV. The extracted features can be used as additional characteristics for target classification in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Research in Micro and Nano Engieering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.