Abstract
With Venus being Earth’s nearest neighbor and it being similar in size to Earth, it is the ideal candidate for certain mission types. These missions range from scientific, such as helio-physics and space weather monitoring, to defense focused, such as monitoring Earth’s orbital path for meteoroid threats. Limited research has been done on the periodic orbits in the Sun–Venus system. The first step to understanding which orbits could be useful for such a mission is to identify families of resonant periodic orbits in the Sun–Venus system and conduct a stability analysis on these orbits. This research work identifies 90 periodic, resonant orbits in the Sun–Venus system and their associated families of orbits. The orbits are found within the Circular Restricted 3 Body Problem (CR3BP) dynamical model with solar radiation pressure included as a perturbation. The periodic orbits are found using Poincaré maps, and the families are generated using a continuation method that steps through different Jacobi constants. The stability for each orbit in the family is calculated and the structure of the eigenvalues for each is assessed to determine when the family has crossed a bifurcation point. This research work seeks to generate a catalog of resonant orbits within the Sun–Venus system while providing stability and bifurcation information for each resonant orbit family.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.