Abstract

Homeodomain-leucine zipper (HD-Zip) proteins are plant-specific transcription factors that play important roles in different biological processes, especially leaf development. However, no studies to date have identified the HD-Zip genes in Liriodendron chinense nor characterized their functions. We identified the HD-Zip genes in L. chinense by analysing the phylogeny, chromosome location, structure, conserved motif, cis-regulatory elements, synteny, post-transcriptional regulation and expression patterns of these genes during leaf development. A total of 36 LcHD-Zip genes were identified and divided into four subfamilies (HD-Zip I to IV). Synteny analysis revealed that segmental duplication was the main force driving the expansion of LcHD-Zip genes. These 36 LcHD-Zip genes exhibited 11 different expression patterns. Pattern 1, 2, 3, 4, 6, 7, 8 and 9 genes may play important roles in leaf development, such as leaf initiation, leaf polarity establishment, leaf shape development, phytohormone-mediated leaf growth and leaf epidermal structure formation. Four HD-Zip III genes were targeted by microRNAs (miRNAs), and the miR165/166a-HD-Zip regulatory module formed regulated leaf initiation and leaf polarity establishment. Overall, LcHD-Zip genes play key roles in leaf development of L. chinense. This work provides a foundation for the functional verification of HD-Zip genes identified in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.