Abstract

To evaluate the effect of the host plant on the quality of Loranthaceae species as medicinal raw material, ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) was used to identify cardiac glycosides in Nerium indicum and its parasitic plant species Taxillus chinensis and Scurrula parasitica. Samples were collected from N. indicum and these parasites, while Morus alba and its parasite T. chinensis and Osmanthus fragrans and its parasite S. parasitica were used as controls. Based on mass spectrometry data and elemental composition analysis of positive and negative ion modes, in combination with standard cardiac glycosides and relevant literature, cardiac glycosides in N. indicum and its parasites T. chinensis and S. parasitica were identified, and their correlations were analyzed. A total of 29 cardiac glycosides were identified, among which 28 were found in N. indicum parasitized by T. chinensis; 25 cardiac glycosides were identified in the same host under attack by S. parasitica; five cardiac glycosides were identified in both T. chinensis and S. parasitica, which grew parasitically on N. indicum, whereas no cardiac glycosides were identified in M. alba parasitized by T. chinensis, or in O. fragrans parasitized by S. parasitica. We conclude that UPLC-Q-TOF-MS/MS technology can identify cardiac glycosides in N. indicum and parasites T. chinensis and S. parasitica rapidly, accurately, and thoroughly. N. indicum will transfer its own cardiac glycosides to its parasites through the special host–parasite interaction. Our results provide a reference basis for evaluating the influence of the host plant on the quality of medicinal compounds obtained from Loranthaceae species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.