Abstract

ABSTRACT The use of temperature as a natural tracer in hydrology is noticed since the 1960s. In recent years, there has been a revival of the use of this physical property in the investigation of water cycle. The main reasons are the cost reduction of temperature measurements and the development of distributed temperature sensing. Here, we present a study of the groundwater-surface water interaction in the Onça Creek Watershed (Guarani Aquifer System outcrop) using stream discharge data and temperature as a natural tracer. Two Parshall flumes were installed 1.2 km apart to quantify stream discharge and determine groundwater contribution. We used an optic fiber cable to identify interaction locations and a probe with thermistors to measure the vertical temperature gradient and estimate flux rates. The results show a discharge difference of ~250 m3.h-1 between both flumes, which we interpret as baseflow contribution. The distributed temperature sensing allowed the identification of regions with gaining behavior. Discharge rates between 200 and 300 mm.day-1 were determined from vertical temperature measurements, which agrees with the streamflow data. The study demonstrated that temperature is attractive as natural tracer in tropical conditions, where the groundwater temperature is higher than the surface water temperature, especially during the winter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call