Abstract
A mathematical model is identifiable if its parameters can be recovered from data. Here we investigate, for linear compartmental models, whether (local, generic) identifiability is preserved when parts of the model – specifically, inputs, outputs, leaks, and edges – are moved, added, or deleted. Our results are as follows. First, for certain catenary, cycle, and mammillary models, moving or deleting the leak preserves identifiability. Next, for cycle models with up to one leak, moving inputs or outputs preserves identifiability. Thus, every cycle model with up to one leak (and at least one input and at least one output) is identifiable. Next, we give conditions under which adding leaks renders a cycle model unidentifiable. Finally, for certain cycle models with no leaks, adding specific edges again preserves identifiability. Our proofs, which are algebraic and combinatorial in nature, rely on results on elementary symmetric polynomials and the theory of input-output equations for linear compartmental models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.