Abstract
In dynamic network identification a major goal is to uniquely identify the topology and dynamic links between the measured node variables. It is common practice to assume that process noises affect every output in multivariable system identification, and every node in dynamic networks with a full rank noise process. For many practical situations this assumption might be overly strong. This leads to the question of how to handle situations where the process noise is not full rank, i.e. when the number of white noise processes driving the network is strictly smaller than the number of nodes. In this paper a first step towards answering this question is taken by addressing the case of a dynamic network where some nodes are noise-free, and others are disturbed with a (correlated) process noise. In this situation the predictor filters that generate the one-step-ahead prediction of the node signals are non-unique, and the appropriate identification criterion leads to a constrained optimization problem. It is assessed when it is possible to distinguish between models on the basis of this criterion, leading to new notions of network identifiability. It appears that a sufficient condition for network identifiability is that every node signal in the network is excited by an external excitation signal or a process noise signal that is uncorrelated with other node excitations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.