Abstract

Dynamic structural causal models (SCMs) are a powerful framework for reasoning in dynamic systems about direct effects which measure how a change in one variable affects another variable while holding all other variables constant. The causal relations in a dynamic structural causal model can be qualitatively represented with an acyclic full-time causal graph. Assuming linearity and no hidden confounding and given the full-time causal graph, the direct causal effect is always identifiable. However, in many application such a graph is not available for various reasons but nevertheless experts have access to the summary causal graph of the full-time causal graph which represents causal relations between time series while omitting temporal information and allowing cycles. This paper presents a complete identifiability result which characterizes all cases for which the direct effect is graphically identifiable from a summary causal graph and gives two sound finite adjustment sets that can be used to estimate the direct effect whenever it is identifiable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.