Abstract
Uncertainty in parameter estimates from fitting within-host models to empirical data limits the model's ability to uncover mechanisms of infection, disease progression, and to guide pharmaceutical interventions. Understanding the effect of model structure and data availability on model predictions is important for informing model development and experimental design. To address sources of uncertainty in parameter estimation, we use four mathematical models of influenza A infection with increased degrees of biological realism. We test the ability of each model to reveal its parameters in the presence of unlimited data by performing structural identifiability analyses. We then refine the results by predicting practical identifiability of parameters under daily influenza A virus titers alone or together with daily adaptive immune cell data. Using these approaches, we present insight into the sources of uncertainty in parameter estimation and provide guidelines for the types of model assumptions, optimal experimental design, and biological information needed for improved predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.