Abstract

Abstract Finite element model (FEM) is a broadly used numerical tool in structural damage detection. In such applications, damage parameters in FEM are estimated by minimizing the differences between experimental modal analysis data and the corresponding FEM model prediction. Very limited works exist on analyzing the identifiability of the FEM used in such applications. In this paper, the identifiability of FEM-based structural damage detection is investigated for undamped elastic beams. We theoretically proved that damage severity at a given location in a uniform beam is identifiable by reformulating the FEM into a linear time invariant (LTI) system. A numerical algorithm is also proposed for checking the identifiability issue of multiple damage locations. Numerical case studies are provided to validate the effectiveness and usefulness of the proposed framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.