Abstract

BackgroundIdiopathic pulmonary hypertension (IPAH) is a rare and severe disease that affects the pulmonary vasculature. As the diagnosis of IPAH requires invasive right heart catheterization surgery, early detection of this condition is notoriously challenging. Therefore, it is of utmost importance to investigate biomarkers present in peripheral blood that could aid physicians in the early identification and management of IPAH. MethodWe speculate that cellular senescence may be involved in the occurrence and development of IPAH through various pathways. In this study, we utilized integrated transcriptome analyses and machine learning-based approach to develop a diagnostic model for IPAH cell senescence. To select genetic features, we employed two machine learning algorithms: the Least Absolute Shrinkage and Selection Operator (LASSO) and Random Forest (RF). Additionally, we validated our findings through both external data sets and qRT-PCR experiments. ResultsThe resulting diagnostic nomogram was able to identify five important biomarkers that can aid in the diagnosis of IPAH, including TNFRSF1B, CCL16, GCLM, IL15, and SOD1. These genes are primarily associated with the immune system, as well as with cell senescence and apoptosis. ConclusionOur study demonstrates the utility of machine learning algorithms in making accurate diagnoses of IPAH, providing clinicians with a more directed approach to the diagnosis and treatment of this disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call