Abstract
We investigate the extension of modal logics by bisimulation quantifiers and present a class of modal logics which is decidable when augmented with bisimulation quantifiers. These logics are refered to as the idempotent transduction logics and are defined using the programs of propositional dynamic logic including converse and tests. This is a nontrivial extension of the decidability of the positive idempotent transduction logics which do not use converse operators in the programs (French, 2006). This extension allows us to apply bisimulation quantifiers to, for example, logics of knowledge, logics of belief and tense logics. We show the idempotent transduction logics preserve the axioms of propositional quantification and are decidable. The definition of idempotent transduction logics allows us to apply these results to a number of combined modal logics with a variety of interactions between modalities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.