Abstract

Consider the set A = R ∪ {+∞} with the binary operations o1 = max and o2 = + and denote by An the set of vectors v = (v1,...,vn) with entries in A. Let the generalised sum u o1 v of two vectors denote the vector with entries uj o1 vj , and the product a o2 v of an element a ∈ A and a vector v ∈ An denote the vector with the entries a o2 vj . With these operations, the set An provides the simplest example of an idempotent semimodule. The study of idempotent semimodules and their morphisms is the subject of idempotent linear algebra, which has been developing for about 40 years already as a useful tool in a number of problems of discrete optimisation. Idempotent analysis studies infinite dimensional idempotent semimodules and is aimed at the applications to the optimisations problems with general (not necessarily finite) state spaces. We review here the main facts of idempotent analysis and its major areas of applications in optimisation theory, namely in multicriteria optimisation, in turnpike theory and mathematical economics, in the theory of generalised solutions of the Hamilton-Jacobi Bellman (HJB) equation, in the theory of games and controlled Marcov processes, in financial mathematics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.