Abstract
We calculate the rank and idempotent rank of the semigroup ${\mathcal{E}}(X,{\mathcal{P}})$ generated by the idempotents of the semigroup ${\mathcal{T}}(X,{\mathcal{P}})$ which consists of all transformations of the finite set $X$ preserving a nonuniform partition ${\mathcal{P}}$. We also classify and enumerate the idempotent generating sets of minimal possible size. This extends results of the first two authors in the uniform case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.