Abstract
An idempotent element in the algebraic structure of a ring is an element that, when multiplied by itself, yields an outcome that remains unchanged and identical to the original element. Any ring with a unity element generally has two idempotent elements, 0 and 1, these particular idempotent elements are commonly referred to as the trivial idempotent elements However, in the case of rings $\mathbb{Z}_n$ and $\mathbb{Z}_n[x]$ it is possible to have non-trivial idempotent elements. In this paper, we will investigate the idempotent elements in the polynomial ring $\mathbb{Z}_{p^2q}[x]$ with $p,q$ different primes. Furthermore, the form and characteristics of non-trivial idempotent elements in $M_2(\mathbb{Z}_{p^2q}[x])$ will be investigated. The results showed that there are 4 idempotent elements in $\mathbb{Z}_{p^2q}[x]$ and 7 idempotent elements in $M_2(\mathbb{Z}_{p^2q}[x])$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Fundamental Mathematics and Applications (JFMA)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.