Abstract

SummarySince the inception of discrete element method (DEM) over 30 years ago, significant algorithmic developments have been made to enhance the performance of DEM while emphasizing simulation fidelity. Nevertheless, DEM is still a computationally expensive numerical method for simulation of granular materials. In this study, a new impulse‐based DEM (iDEM) approach is introduced that uses collision impulse instead of contact force and directly handles velocity while bypassing integration of acceleration. Contact force required for engineering applications is retrieved with reasonable fidelity via an original proposed formulation. The method is robust, numerically stable and results in significant speed up of almost two orders of magnitude over conventional DEM. The proposed iDEM allows for the simulation of large number of particles within reasonable run times on readily accessible computer hardware. Copyright © 2015 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.