Abstract

Abstract Let $S=K[x_1,\ldots ,x_n]$ be the polynomial ring over a field K, and let A be a finitely generated standard graded S-algebra. We show that if the defining ideal of A has a quadratic initial ideal, then all the graded components of A are componentwise linear. Applying this result to the Rees ring $\mathcal {R}(I)$ of a graded ideal I gives a criterion on I to have componentwise linear powers. Moreover, for any given graph G, a construction on G is presented which produces graphs whose cover ideals $I_G$ have componentwise linear powers. This, in particular, implies that for any Cohen–Macaulay Cameron–Walker graph G all powers of $I_G$ have linear resolutions. Moreover, forming a cone on special graphs like unmixed chordal graphs, path graphs, and Cohen–Macaulay bipartite graphs produces cover ideals with componentwise linear powers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.