Abstract

Recently, warm dense matter has emerged as an interdisciplinary field that draws increasing interest in plasma physics, condensed matter physics, high pressure science, astrophysics, inertial confinement fusion, as well as material science under extreme conditions. To allow the study of well-defined warm dense matter states, we introduced the concept of idealized slab plasma (ISP) that can be realized in the laboratory via (1) the isochoric heating of a solid and (2) the propagation of a shock wave in a solid. The application of this concept provides new means for probing AC conductivity, equation of state, ionization, and opacity. These approaches are presented here using results derived from numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.