Abstract

Idealized simulations with a cloud-resolving model are conducted to examine the impact of a simplified city on the structure of a supercell thunderstorm. The simplified city is created by enhancing the surface roughness length and/or surface temperature relative to the surroundings. When the simplified city is both warmer and has larger surface roughness relative to its surroundings, the supercell that passes over it has a larger updraft helicity (at both midlevels and the surface) and enhanced precipitation and hail downwind of the city, all relative to the control simulation. The storm environment within the city has larger convective available potential energy which helps stimulate stronger low-level updrafts. Storm relative helicity (SRH) is actually reduced over the city, but enhanced in a narrow band on the northern edge of the city. This band of larger SRH is ingested by the primary updraft just prior to passing over the city, corresponding with enhancement to the near-surface mesocyclone. Additional simulations in which the simplified city is altered by removing either the heat island or surface roughness length gradient reveal that the presence of a heat island is most closely associated with enhancements in updraft helicity and low-level updrafts relative to the control simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call