Abstract

Abstract A three-dimensional, nonhydrostatic, fine-resolution model, with explicitly resolved convective processes, is used to investigate the evolution of (a) a hurricane in two sheared flows, and (b) a hurricane interacting with four different upper-level lows. The negative impact of vertical shear on hurricane intensification is confirmed. The hurricanes display asymmetries that are most pronounced in higher shear flow. In both shear cases, the hurricane asymmetries seem to be related to a single upper-tropospheric outflow jet forcing convective activity below its right entrance region. Weak subsidence is confined to only part of the eye. Less eye subsidence leads to less inner-core warming, and hence a smaller fall in central surface pressure. A hurricane in zero flow (control) displays subsidence in the entire eye leading to a symmetric storm with a deep, strong warm core temperature anomaly and lower central surface pressure. In the weak shear and control cases, the radius of maximum wind (RMW) cont...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.