Abstract

We establish existence results for finite dimensional vector minimization problems allowing the solution set to be unbounded. The solutions to be referred are ideal(strong)/weakly efficient(weakly Pareto). Also several necessary and/or sufficient conditions for the solution set to be non-empty and compact are established. Moreover, some characterizations of the non-emptiness (boundedness) of the (convex) solution set in case the solutions are searched in a subset of the real line, are also given. However, the solution set fails to be convex in general. In addition, special attention is addressed when the underlying cone is the non-negative orthant and when the semi-strict quasiconvexity of each component of the vector-valued function is assumed. Our approach is based on the asymptotic description of the functions and sets. Some examples illustrating such an approach are also exhibited.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.