Abstract

Heterojunctions featuring a type II band alignment play a crucial role in a wide range of devices, particularly in the realm of solar cells. However, the design of such heterojunctions with a specific type of band alignment poses a substantial challenge due to the immense number of potential combinations of bulk semiconductors and their relative orientations. In this study, we propose an efficient, high-throughput computational screening method tailored for heterojunctions. Our approach, using the ideal vacuum level as a reference energy, eliminates the need for explicit electronic structure calculations for junctions. Through this protocol, we identify 1041 type II heterojunctions out of 2692 structures constructed from 86 selected inorganic compounds with appropriate band gaps sourced from the Inorganic Crystal Structure Database. For potential application in solar cells, we assess these heterojunctions, and remarkably, 58 of them exhibit a power conversion efficiency (PCE) exceeding 15%, with 13 surpassing the 20% threshold. Test calculations with expensive interface models confirm the reliability of PCE predictions based on ideal vacuums. These predictions will be of benefit in assessing the material applicability for solar cell applications. Furthermore, the versatility of our proposed screening method extends beyond solar cells, making it a valuable theoretical design tool that can be applied to a wide range of heterojunction devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call