Abstract

Ideal Weyl points, which are related by symmetry and thus reside at the same frequency, could offer further insight into the Weyl physics. The ideal type-I Weyl points have been observed in photonic crystals, but the ideal type-II Weyl points with tilted conelike band dispersions are still not realized. Here we present the observation of the ideal type-II Weyl points of the minimal number in three-dimensional phononic crystals and, in the meantime, the topological phase transition from the Weyl semimetal to the valley insulators of two distinct types. The Fermi-arc surface states are shown to exist on the surfaces of the Weyl phase, and the Fermi-circle surface states are also observed, but on the interface of the two distinct valley phases. Intriguing wave partition of the Fermi-circle surface states is demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call