Abstract
Elastic response and strength of perfect crystals is calculated for triaxial loading conditions from first principles. The triaxial stress state is constituted by uniaxial tensile stress and superimposed transverse biaxial stresses. The maximum uniaxial tensile stress is evaluated as a function of the transverse stresses. Results for eight crystals of cubic metals and two orientations ($⟨110⟩$ and $⟨111⟩$) of the primary loading axis are presented and compared with data for $⟨100⟩$ direction of loading. Obtained results show that, within a studied range of biaxial stresses, the maximum tensile stress monotonically increases with increasing biaxial tensile stress for most of the studied metals. Within a certain range, the dependence can be mostly approximated by a linear function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.