Abstract

We study a system of differential equations that governs the distribution of matter in the theory of General Relativity. The new element in this paper is the use of a dynamical action principle that includes all the degrees of freedom, matter as well as metric. The matter lagrangian defines a relativistic version of non-viscous, isentropic hydrodynamics. The matter fields are a scalar density and a velocity potential; the conventional, four-vector velocity field is replaced by the gradient of the potential and its scale is fixed by one of the eulerian equations of motion, an innovation that significantly affects the imposition of boundary conditions. If the density is integrable at infinity, then the metric approaches the Schwarzschild metric at large distances. There are stars without boundary and with finite total mass; the metric shows rapid variation in the neighbourhood of the Schwarzschild radius and there is a very small core where a singularity indicates that the gas laws break down. For stars with boundary there emerges a new, critical relation between the radius and the gravitational mass, a consequence of the stronger boundary conditions. Tentative applications are suggested, to certain Red Giants, and to neutron stars, but the investigation reported here was limited to polytropic equations of state. Comparison with the results of Oppenheimer and Volkoff on neutron cores shows a close agreement of numerical results. However, in the model the boundary of the star is fixed uniquely by the required matching of the interior metric to the external Schwarzschild metric, which is not the case in the traditional approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call