Abstract
Ear reconstruction using three-dimensional (3D) printing technique has been considered as a good substitute for conventional surgery, because it can provide custom-made 3D framework. However, there are difficulties with its application in clinical use. Researchers have reported 3D scaffolds for ear cartilage regeneration, but the designs of the 3D scaffolds were not appropriate to be used in surgery. Hence, we propose the design of an ideal 3D ear scaffold for use in ear reconstruction surgery. Facial computed tomography (CT) images of the unaffected ear were extracted using a "segmentation" procedure. The selected data were converted to a 3D model and mirrored to create a model of the affected side. The design of 3D model was modified to apply to Nagata's two-stage surgery. Based on the 3D reconstructed model, a 3D scaffold was 3D printed using polycaprolactone. The 3D scaffold closely resembled the real cartilage framework used in current operations in terms of ear anatomy. To account for skin thickness, the 3D scaffold was made 4 mm smaller than the real ear. Furthermore, 2 mm pores were included to allow the implantation of diced cartilage to promote regeneration of the cartilage. 3D printing technology can overcome the limitations of previous auricular reconstruction methods. Further studies are required to achieve a functional and stable substitute for auricular cartilage and to extend the clinical use of the 3D-printed construct. Additionally, the ethical and legal issues regarding the transplantation of 3D-printed constructs and cell culture technologies using human stem cells remain to be solved. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1295-1303, 2019.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Biomedical Materials Research Part B: Applied Biomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.