Abstract

Combining highly coherent spin control with efficient light-matter coupling offers great opportunities for quantum communication and computing. Optically active semiconductor quantum dots have unparalleled photonic properties but also modest spin coherence limited by their resident nuclei. The nuclear inhomogeneity has thus far bound all dynamical decoupling measurements to a few microseconds. Here, we eliminate this inhomogeneity using lattice-matched GaAs-AlGaAs quantum dot devices and demonstrate dynamical decoupling of the electron spin qubit beyond 0.113(3) ms. Leveraging the 99.30(5)% visibility of our optical π-pulse gates, we use up to Nπ = 81 decoupling pulses and find a coherence time scaling of [Formula: see text]. This scaling manifests an ideal refocusing of strong interactions between the electron and the nuclear spin ensemble, free of extrinsic noise, which holds the promise of lifetime-limited spin coherence. Our findings demonstrate that the most punishing material science challenge for such quantum dot devices has a remedy and constitute the basis for highly coherent spin-photon interfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call