Abstract

A classical problem in free-surface hydrodynamics concerns flow in a channel, when an obstacle is placed on the bottom. Steady-state flows exist and may adopt one of three possible configurations, depending on the fluid speed and the obstacle height; perhaps the best known has an apparently uniform flow upstream of the obstacle, followed by a semiinfinite train of downstream gravity waves. When time-dependent behaviour is taken into account, it is found that conditions upstream of the obstacle are more complicated, however, and can include a train of upstream-advancing solitons. This paper gives a critical overview of these concepts, and also presents a new semianalytical spectral method for the numerical description of unsteady behaviour. doi:10.1017/S1446181121000341

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.