Abstract
We present a design of "ideal" optical delay lines (i.e., constant amplitude and constant group delay over the desired bandwidth). They are based on reflection from coupled-resonator optical waveguides (CROWs). The inter-resonator coupling coefficients are tailored and decrease monotonically with the distance from the input to realize all-pass Bessel filters. The tailored coupling coefficients result in a frequency-dependent propagating distance which compensates for the group velocity dispersion of CROWs. We present a simple formalism for deriving the time-domain coupling coefficients and convert these coefficients to field coupling coefficients of ring resonators. The reflecting CROWs possess a delay-bandwidth product of 0.5 per resonator, larger than that of any kind of transmitting CROW. In the presence of uniform gain, the gain enhanced by slow light propagation and the constant group delay result in efficient and dispersion-free amplifiers.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.