Abstract

We provide a constructive, variational proof of Rivin’s realization theorem for ideal hyperbolic polyhedra with prescribed intrinsic metric, which is equivalent to a discrete uniformization theorem for spheres. The same variational method is also used to prove a discrete uniformization theorem of Gu et al. and a corresponding polyhedral realization result of Fillastre. The variational principles involve twice continuously differentiable functions on the decorated Teichmuller spaces $$\widetilde{\mathscr {T}}_{g,n}$$ of punctured surfaces, which are analytic in each Penner cell, convex on each fiber over $$\mathscr {T}_{g,n}$$ , and invariant under the action of the mapping class group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.