Abstract

<p>Compression technique is adopted to solve various big data problems such as storage and transmission. The growth of cloud computing and smart phone industries has led to generation of huge volume of digital data. Digital data can be in various forms as audio, video, images and documents. These digital data are generally compressed and stored in cloud storage environment. Efficient storing and retrieval mechanism of digital data by adopting good compression technique will result in reducing cost. The compression technique is composed of lossy and lossless compression technique. Here we consider Lossless image compression technique, minimizing the number of bits for encoding will aid in improving the coding efficiency and high compression. Fixed length coding cannot assure in minimizing bit length. In order to minimize the bits variable Length codes with prefix-free codes nature are preferred. However the existing compression model presented induce high computing overhead, to address this issue, this work presents an ideal and efficient modified Huffman technique that improves compression factor up to 33.44% for Bi-level images and 32.578% for Half-tone Images. The average computation time both encoding and decoding shows an improvement of 20.73% for Bi-level images and 28.71% for Half-tone images. The proposed work has achieved overall 2% increase in coding efficiency, reduced memory usage of 0.435% for Bi-level images and 0.19% for Half-tone Images. The overall result achieved shows that the proposed model can be adopted to support ubiquitous access to digital data.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.