Abstract
The statistical theory of absolute equilibrium ensembles is extended to describe ideal, three-dimensional, magnetohydrodynamic (MHD) turbulence with and without rotation, and with and without a mean magnetic field. Results from seven long-time numerical simulations of five general cases on a 32 3 grid are presented. One notable result is the discovery of a new ideal invariant, the 'parallel helicity,' which arises when rotation and mean magnetic field vectors are aligned. Although the basic equations and statistical theory are symmetric under parity or charge reversal, the presence of invariant cross, magnetic or parallel helicity dynamically breaks this symmetry. Ideal MHD turbulence is, in general, non-ergodic due to the decomposability of the constant energy surface in phase space. Non-ergodicity can be manifested in the appearance of coherent structure as long as magnetic or parallel helicity is invariant. The fact that MHD turbulence inherently contains coherent structure in certain general cases may have important implications for dynamo theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.