Abstract

We consider the collective motion of animals in time-varying environments, using as a case the diel vertical migration of marine copepods. The animals are distributed in space such that each animal moves optimally, seeking regions which offer high growth rates and low mortalities, subject to costs on excessive movements as well as being in regions with high densities of conspecifics. The model applies to repeated scenarios such as diel or seasonal patterns, where the animals are aware of both current and future environmental conditions. We show that this problem can be viewed as a differential game of mean field type, and that the evolutionary stable solution, i.e., the Nash equilibrium, is characterized by partial differential equations, which govern the distributions and migration velocities of animals. These equations have similarities to equations that appear in the fluid dynamics, specifically the Euler equations for compressible inviscid fluids. If the environment is constant, the ideal free distribution emerges as an equilibrium. We illustrate the theory with a numerical example of vertical migrations of oceanic copepods, where animals are attracted to nutrient-rich surface waters while repulsed from light during daytime due to the presence of visual predators, aiming to reduce both proximity to conspecifics and swimming efforts. For this case, we show that optimal movements are diel vertical migrations in qualitative agreement with observations of copepods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.