Abstract

A population is said to have an ideal free distribution in a spatially heterogeneous but temporally constant environment if each of its members have chosen a fixed spatial location in a way that optimizes its individual fitness, allowing for the effects of crowding. In this paper, we extend the idea of individual fitness associated with a specific location in space to account for the full path that an individual organism takes in space and time over a periodic cycle, and extend the mathematical formulation of an ideal free distribution to general time periodic environments. We find that, as in many other cases, populations using dispersal strategies that can produce a generalized ideal free distribution have a competitive advantage relative to populations using strategies that do not produce an ideal free distribution. A sharp criterion on the environmental functions is found to be necessary and sufficient for such ideal free distribution to be feasible. In the case the criterion is met, we showed that there exist dispersal strategies that can be identified as producing a time-periodic version of an ideal free distribution, and such strategies are evolutionarily steady and are neighborhood invaders from the viewpoint of adaptive dynamics. Our results extend previous works in which the environments are either temporally constant, or temporally periodic but the total carrying capacity is temporally constant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.