Abstract

Abstract Theoretical and practical evidence is put forward to show that copolymers can be treated like solutions of small molecules in the interpretation of packing phenomena, and that ideal volume-additivity of the repeating units in copolymers is frequently realized. On this basis equations are derived for predicting θ, the second-order transition temperature, of binary copolymers from the two second-order transition temperatures of the pure polymers and their coefficients of expansion in the glassy and rubbery states. Previous mechanistic theories of the second-order transition temperature of such copolymers are thus superseded by a general reduction of the problem to the mechanism of thermal expansion. Practical applications to the choice of monomers in producing synthetic rubbers are outlined, and attention is drawn to the importance of second-order transitions in kinetic measurements on the reactions of polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.